Worksheet, Discussion \#25; Friday, 7/20/2018
Instructor name: Roy Zhao

1 Recurrence Relations

1.1 Concepts

1. A homogeneous recurrence relation does not include any extra constants (e.g. $a_{n}=$ $a_{n-1}+a_{n-2}$) and a nonhomogeneous recurrence relation contains one (e.g. $a_{n}=$ $\left.a_{n-1}+4\right)$. The order of a recurrence relation is the "farthest" back the relation goes. For instance, the order of $a_{n}=a_{n-1}+a_{n-3}$ is 3 because we need the term 3 terms back $\left(a_{n-3}\right)$. A linear recurrence relation has all the a_{i} terms being linear and a recurrence relation with constant coefficients is one where the coefficients in front of the a_{i} are all constants.

1.2 Problems

2. For the following recurrence relations, find their order and label them as homogeneous, linear, and/or with constant coefficients.
(a) $a_{n}=a_{n-1}+n a_{n-1}^{2}$
(b) $a_{n}=n^{2} a_{n-1}-a_{n-2}$
(c) $a_{n}=4 a_{n-1}-2 a_{n-4}+3$
(d) $a_{n}=a_{n-1}^{2}-n^{2}$
(e) $a_{n}=a_{n-2}$
(f) $a_{n}=a_{n-1}-a_{n-2}$
3. Find constants A, B such that $a_{n}=A n+B$ is a solution to the recurrence relation $a_{n}=2 a_{n-1}-3 a_{n-2}+2 n$.
4. Verify that $a_{n}=n+1$ is a solution to $a_{n}=3 a_{n-1}-3 a_{n-2}+a_{n-3}$.
5. Find constants A, B such that $a_{n}=A n+B$ is a solution to the recurrence relation $a_{n}=a_{n-1}+a_{n-3}+n+3$.
6. Verify that $a_{n}=1-n$ is a solution to $a_{n}=2 a_{n-1}-a_{n-2}$.
