Math 10A Worksheet, Discussion #25; Friday, 7/20/2018 Instructor name: Roy Zhao

1 Recurrence Relations

1.1 Concepts

1. A homogeneous recurrence relation does not include any extra constants (e.g. $a_n = a_{n-1} + a_{n-2}$) and a nonhomogeneous recurrence relation contains one (e.g. $a_n = a_{n-1} + 4$). The order of a recurrence relation is the "farthest" back the relation goes. For instance, the order of $a_n = a_{n-1} + a_{n-3}$ is 3 because we need the term 3 terms back (a_{n-3}) . A linear recurrence relation has all the a_i terms being linear and a recurrence relation with constant coefficients is one where the coefficients in front of the a_i are all constants.

1.2 Problems

- 2. For the following recurrence relations, find their order and label them as homogeneous, linear, and/or with constant coefficients.
 - (a) $a_n = a_{n-1} + na_{n-1}^2$
 - (b) $a_n = n^2 a_{n-1} a_{n-2}$
 - (c) $a_n = 4a_{n-1} 2a_{n-4} + 3$
 - (d) $a_n = a_{n-1}^2 n^2$
 - (e) $a_n = a_{n-2}$
 - (f) $a_n = a_{n-1} a_{n-2}$
- 3. Find constants A, B such that $a_n = An + B$ is a solution to the recurrence relation $a_n = 2a_{n-1} 3a_{n-2} + 2n$.
- 4. Verify that $a_n = n + 1$ is a solution to $a_n = 3a_{n-1} 3a_{n-2} + a_{n-3}$.
- 5. Find constants A, B such that $a_n = An + B$ is a solution to the recurrence relation $a_n = a_{n-1} + a_{n-3} + n + 3$.
- 6. Verify that $a_n = 1 n$ is a solution to $a_n = 2a_{n-1} a_{n-2}$.